Jump to content

Talk:Golden ratio

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

Short description

[edit]

There appears to be an idea that the "short description" is strictly limited by character count, for something to do with the technologically handicapped who can't see a full screen. In which case I can't get too worked up about it, but fwiw... I don't think a proper description could be shorter than the first sentence of the lead. The "symbolic version" ((a + b) : a :: a : b) is not very transparent to the non-mathematical, but any very condensed prose version is unlikely to be understood by anyone who couldn't understand the symbolic version. I suggest another possibility, which is something like "A ratio (approx. 1.618) which has been ascribed mystic properties." The point is that the purpose of the short description has to be (I think) to confirm to those who have heard of it that it is indeed what they are thinking of, or to hint to those who haven't why this article exists; the purpose is not to give a mathematical definition of its value.

Aside: a lot of good work has been done on these number articles, but I cannot help feeling that a problem is that while there is more than enough mathematical expertise (which is needed of course) there is a slight shortage of sensitivity to the English language. Imaginatorium (talk) 07:54, 25 December 2023 (UTC)[reply]

The "mystic properties" part is bullshit though (as the article takes pains to explain). Any such "mystic properties" are not really of special mathematical or cultural significance.
The most important and characteristic feature of this ratio is that it is the ratio of the diagonal to the side of the regular pentagon, which is why it features prominently everywhere that 5-fold symmetry appears. Because of the strong law of small numbers (in this case meaning small algebraic numbers based on a polynomial of low degree with small integer coefficients), it also appears in other places, e.g. the solution to various combinatorial problems, which don't at first glance have a direct relation to 5-fold symmetry (but can usually be explained/interpreted that way with some effort). –jacobolus (t) 08:06, 25 December 2023 (UTC)[reply]
We really shouldn't be trying to find short descriptions that take mathematical understanding to decode or that point to the most salient properties of the topic. That is not what short descriptions are for. They're mainly for things like: in mobile, you search for something, and you get multiple results that match your search. Which one do you want to read? So they should be short, and they should disambiguate the topic, without just repeating the title, but they are not intended to be a rigorous and completely unambiguous description of the topic. I think "Number, approximately 1.618" is better for this than either trying to spell out the extreme and mean ratio or trying to describe some geometric property that fits the golden ratio. —David Eppstein (talk) 08:13, 25 December 2023 (UTC)[reply]
Correct. I just used the Wikipedia app on a phone to search for "golden". It showed "Golden ratio / Number, approximately 1.618" with the image from the infobox. That is perfect for finding the correct article to read. The short description is for disambiguation. It is not a Google snippet or an alternative to reading the article. Johnuniq (talk) 08:30, 25 December 2023 (UTC)[reply]
I think "Number, approximately 1.618" is good enough for the purposes of a short description. (I also think that "short description" might not be the best short description of what a short description is supposed to do.) XOR'easter (talk) 16:20, 25 December 2023 (UTC)[reply]

Just to comment briefly again: I said "ascribed" magic properties; that is true and notable, even though of course the magic properties are nonsense. Imaginatorium (talk) 08:11, 16 May 2024 (UTC)[reply]

[edit]

Please, let you add a link to q:Golden ratio at the bottom of the WP article 2.196.177.65 (talk) 11:44, 15 May 2024 (UTC)[reply]

This appears to be a backdoor method of reinstating extremely dubious claims about the widespread use of the Golden ratio in classical art and architecture, unsupported by modern scholarship and correctly eradicated from this article. —David Eppstein (talk) 17:33, 15 May 2024 (UTC)[reply]
The page q:Golden ratio is very strange. That page should probably be deleted, unless someone plans to fill it with proper quotations. I was expecting it to have stuff like Kepler "Geometry has two great treasures [...]" etc., but instead it seems to be some incoherent book excerpts. It's not clear what the point is, but it seems like an abuse of Wikiquote. –jacobolus (t) 19:20, 15 May 2024 (UTC)[reply]

"Eradicated" seems an odd idea. I know I'm out on a limb here, but I think it would generally be regarded as a Good Thing if what WP said were actually true. It is important to note this historical obsession with the idea that creating something beautiful instinctively produces the GR, which is false, as opposed to the idea that someone might deliberately use it because of some mumbo-jumbo belief set. I think that the mumbo-jumbo is significant enough to be mentioned in the lead: after all, *why* is it called the "Golden Ratio", "Divine Proportion", etc. But it is also important to get the facts straight: the article includes a quote from a book by a professor with the word "mathematics" in his title: "The Golden Ratio is a standard feature of many modern designs, from postcards and credit cards to posters and light-switch plates." Perfectly supported quotation, proper printed book, what could go wrong? (Well, why do we instantly know from the "light-switch plates" that he is an American? Because he has no concept that "light-switch plates" might be a different shape entirely in other countries, if he even has a clear concept that there are other countries.) So I only know about credit cards and postcards. Credit cards are a universal size (I believe!): 86 by 64 mm. Their aspect ratio is 1.34 approx.; the ratio of the diagonal to the length is about 1.56; the GR is nowhere to be seen. Postcards vary somewhat: I selected the longest group from a bundle at hand, and got a typical 153x103 mm; AR = 1.48. So this book is not telling the truth, and we should not uncritically pass on lies. Imaginatorium (talk) 08:07, 16 May 2024 (UTC)[reply]

mvar template displaying variable name with odd line breaks in infobox on mobile

[edit]

On my android mobile device, the title of the initial infobox takes up three lines because of what seems to be some odd behavior of the mvar template, adding line breaks within the parentheses for the variable name. Can anyone replicate this and figure out how to fix it? It displays perfectly on a computer browser... Willmskinner (talk) 03:11, 27 August 2024 (UTC)[reply]

Semi-protected edit request on 7 September 2024

[edit]

In the "Music" section of the article it talks about Debussy's "Reflets dans l'eau" which actually translates to "reflections in the water" instead of just "reflections in water" This is a very small change so I apologize for the inconvenience. 2A02:A58:8291:BC00:C82B:18DC:E9C4:DB34 (talk) 10:41, 7 September 2024 (UTC)[reply]

"reflections in water" is the correct translation: English and French grammars are not the same, and it is without "the" that the meaning is kept. However, I fixed the capitalization. D.Lazard (talk) 16:46, 7 September 2024 (UTC)[reply]
By the way, would reflets en eau also be correct? —Tamfang (talk) 02:44, 17 December 2024 (UTC)[reply]

Semi-protected edit request on 16 December 2024

[edit]

Above the definition of Rogers-Ramanujan function R(q) change "For , let" to "For example, let". 2A00:1028:8388:6446:AD6C:8E02:2C5A:FBD4 (talk) 16:48, 16 December 2024 (UTC)[reply]

 Fixed: This was a format error resulting that a fomula was not displayed before the comma. D.Lazard (talk) 18:21, 16 December 2024 (UTC)[reply]

Semi-protected edit request on 15 March 2025

[edit]

Please change:

The decimal expansion of the golden ratio [1] has been calculated to an accuracy of ten trillion () digits.[2]

to:

The decimal expansion of the golden ratio [1] has been calculated to an accuracy of twenty trillion () digits.[2]

as the referenced y-cruncher link indicates Jordan Ranous computed 20,000,000,000,000 digits of the golden ratio on November 27, 2023. Qqid (talk) 10:00, 15 March 2025 (UTC)[reply]

 Done Warriorglance(talk to me) 06:16, 16 March 2025 (UTC)[reply]
  1. ^ a b Cite error: The named reference a001622 was invoked but never defined (see the help page).
  2. ^ a b Cite error: The named reference ycruncher was invoked but never defined (see the help page).